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The increasing availability of telemetry data with high spatial and temporal resolution

promises to greatly advance scientific understandings of the movement patterns of indi-

vidual organisms across space and time. The amount of data provided by such methods,

however, can be challenging to analyze and interpret. In this study, we present a new

approach for analyzing animal movements that aggregates telemetry locations into spa-

tial clusters and extracts the information from sequences formed by individuals passing

through these spatial clusters. We applied this integrated approach of spatial aggregation

and sequence analysis to quantify and compare trajectories of cattle (Bos taurus), mule

deer (Odocoileus hemionus), and elk (Cervus elaphus) tracked by automated telemetry at

the Starkey Experimental Forest and Range in northeastern Oregon, USA. Our approach

effectively differentiated movement patterns of the three species. It provides a useful

mean of quantifying movement patterns of species in a landscape.

Introduction

Animal movement is a fundamental process that determines the fate of individual organisms,

the structure and dynamics of biological populations, and the nature of species interactions and

biological community assembly (Nathan et al. 2008; Miller 2012). The increasing availability

of telemetry data with high spatial and temporal resolution promises to greatly advance the sci-

entific understanding of how spatial and temporal factors impact the movements of individual

organisms and thereby affect species persistence in heterogeneous landscapes. However, the

degree to which such data may yield important insights is dependent on the development of

appropriate and effective means of analysis that capture important aspects of animal

movement.

The earliest analyses of animal movement using data collected by GPS or telemetry

involved the estimation of animal home range, the “area traversed by the individual in its
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normal activities of food gathering, mating, and caring for young” (Burt 1943: p 351). Since

then, various approaches have been developed for characterizing aspects of animal movement

(e.g., the relative angles between successive moves, the distance between successive reloca-

tions: Calenge, Dray, and Royer-Carenzi (2009)) and, less commonly, analyzing the distribu-

tion of descriptive movement parameters (e.g., by comparing metrics computed for observed

trajectories with those expected based on simulated trajectories: Miller (2012)). Few studies,

however, have considered the potentially useful information provided by the sequences of ani-

mal movement through sampled positions, particularly as a means of quantifying and compar-

ing movement patterns of different species across landscapes.

In this study, we provide a new approach to analyzing trajectories of animal movement to

quantify the movement patterns of different species. Our approach aggregates telemetry loca-

tions into groups of points (spatial clusters) and then considers trajectories as sequences passing

through these spatial clusters. Valuable information including spatial and aspatial properties of

these trajectories can then be extracted from these sequences. We specifically tested the

hypothesis that these properties can capture and discriminate the movement characteristics of

different species by classifying the trajectories of different species using these properties.

Finally, we compared the performance of our method with another trajectory classification

method that used the same data set.

Related work

Movement pattern analysis, which has been developing alongside time geography, provides an

efficient means of extracting useful information and recognizing patterns in movement data

sets expressed as locations (typically x, y coordinates) collected at discrete time intervals (Long

and Nelson 2013). Insights into animal movement patterns and processes have come not just

from the field of biology but from methods developed in fields such as computer science, GIS,

and geovisualization to analyze the movement of a wider range of objects. In the visual ana-

lytics of movement, Andrienko, Andrienko, and Gatalsky (2000) designed a collection of widg-

ets connected to dynamic map displays that allows users to investigate instant movement

patterns by selecting a time moment or to explore the dynamic of movement patterns in time

intervals that the users set. They applied the tool to telemetric observations of stork migration

to Africa in autumn 1998 and back to Europe in spring 1999. By animating the routes of storks

in different time intervals, they found the routes looked like “worms” crawling on the maps

and that these “worms” captured dynamic characteristics of movement (e.g., variation of speed

in different time intervals). The authors argued that such dynamic displays are superior to an

ordinary animated presentation in capturing these dynamic characteristics. Such observations

have been more fully developed through the computation of parameters that describe the basic

unit of an individual movement trajectory (a “step”) in terms of its length and orientation in

space, for example, the distance, speed or angle between the coordinates of the two relocations

defining the step (Brillinger et al. 2004; Calenge, Dray, and Royer-Carenzi 2009).

As with other types of trajectories, the large amount of data associated with telemetry data

for animal movements exerts high demands on the methods of visual analytics, pattern detec-

tion and recognition. A variety of computational algorithms have been proposed to reduce the

complexity inherent in large data sets, improve the efficiency of trajectory visualization, and

facilitate pattern recognition. Clustering is a widely used technique for these purposes in ana-

lyzing and comparing trajectories. In much the same way that nonspatial objects can be
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clustered on the basis of similarity measures, indices describing the path similarity of trajecto-

ries can be represented by measures such as the Hausdoff distance (Huttenlocher, Klanderman,

and Rucklidge 1993), the Longest Common SubSequence (LCSS) (e.g., Vlachos, Gunopoulos,

and Kollios 2002; Cheriyadat and Radke 2008) and Dynamic Time Wrapping (DTW) (e.g.,

Usabiaga et al. 2007). While popular, these measurements have documented weaknesses as

well: the Hausdoff distance cannot consider chronological order of the points (Zhang, Huang,

and Tan 2006), the LCSS is sensitive to the threshold selected to determine whether two

elements match, and the DTW is not robust to noise (Chen, €Ozsu, and Oria 2005).

Alternatively, another set of algorithms reduces the complexity of large data sets by group-

ing telemetry locations into subsets such as spatial clusters (e.g., Andrienko and Andrienko

2011) or regions (e.g., Guo, Liu, and Jin 2010). By aggregating movement between locations,

users are able to obtain an overall view of the spatial and temporal distribution of multiple

movements and to uncover potential patterns (Andrienko and Andrienko 2013). This kind of

approach, which is less influenced by the geometry of movement paths, can detect hidden pat-

terns in the movement data and might be particularly suitable for animal movements because

organisms, unlike vehicles, usually exhibit free movement. Verhein and Chawla (2008) estab-

lished multiple spatiotemporal association rules to detect stationary and high traffic regions

and described how mobile objects move between regions over time. When they applied their

method to the movement of caribou in northern Canada, group and individual movements were

distinguished by different regions where the movement occurred.

Beyond methods that can quantify aspects of individual movement, there is a need for ana-

lytical approaches that can statistically differentiate patterns of movement and habitat utiliza-

tion for predefined groups of individuals. Comparisons of the spatial ecologies of multiple

species (their movements and home ranges) can be used to demonstrate contrasting patterns of

space and habitat use (e.g., Ryan et al. 2008; Jaeger and Cobb 2012). However, while

approaches that examine the joint-space use between groups by calculating an index of home

range overlap or volume of intersection using utilization distributions can be helpful (e.g.,

Millspaugh et al. 2004; Fieberg and Kochanny 2005), they are largely descriptive and may fail

to fully capitalize on the wealth of information provided by most modern telemetry data sets.

Methods that can statistically contrast the movement of multiple individuals belonging to more

than one group may provide a better means for comparing species movements across a land-

scape. Such approaches could also potentially contribute to a well-recognized need for methods

that can be used to quantify interactions between animals (Long et al. 2014).

Data and methods

Study site and data

The telemetry data used in this study were collected in June 1995 at the Starkey Experimental

Forest and Range (EFR), which is located in the Blue Mountains ca. 50 km southwest of

LaGrande, Oregon, USA. The study area is managed by the U.S. Forest Service and includes

78 km2 of forests and mountain meadows enclosed by a 2.4 m high ungulate-proof fence that

restricts the immigration of large herbivores. Forests are dominated by Douglas fir (Pseudot-

suga mensiesii), ponderosa pine (Pinus ponderosa), grand fir (Abies grandis), and lodgepole

pine (Pinus contorta) and cover about 70% of the study area. The remaining 30% is occupied

by grasslands and meadows dominated by bunchgrasses (Festuca idahoensisr, Poa sandbergii,
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and Agropyron spicatum). Elevation ranges between 1,100 and 1,500 m, and the average

annual precipitation from 1993 to 1996 was 636 mm (Rowland et al. 1998; Coe et al. 2001).

The data comprise 14,990 x-y coordinates for 34 cattle (Bos taurus), 30 mule deer

(Odocoileus hemionus), and 38 elk (Cervus elaphus) that were tracked by an automated teleme-

try system based on a rebroadcast civilian long-range navigation (LORAN-C) technology.

Temporal resolution of the movement data (which are described in greater detail in Rowland

et al. 1998) is 45–90 min, and the spatial error is ca. 200 m. These data were also examined by

Lee, Han, and Whang (2007) for trajectory clustering and Lee et al. (2008) for trajectory

classification.

The three species chosen for our analysis have distinct habitat preferences, foraging ecolo-

gies and movement restrictions. Cattle avoid steep slopes and tend to select places in lower ele-

vations compared to mule deer and elk. During the time that the data were collected, cattle

inhabited the northeast corner of the Starkey EFR, and their movement was restricted by

barbed-wire fences (Coe et al. 2001). Elk used both mesic and logged forests while mule deer

avoid xeric grasslands (Stewart et al. 2002). Although mule deer and elk ranged freely within

the study area without any movement restrictions, individual movements tended to be more

highly concentrated along the eastern (mule deer) or western (elk) edge of the study area for

the different species (Fig. 1).

Data analysis

Our method has two steps. In the first step, telemetry locations are aggregated into groups of

points termed spatial clusters (Fig. 2a). This step is to reduce data complexity and achieve a prac-

tical computational efficiency by reducing the large number of telemetry points to a manageable

number of spatial clusters. After aggregation, trajectories are considered as sequences passing

through these spatial clusters (Fig. 2b). The second step is to extract spatial or aspatial properties

from these sequences (Fig. 2c). The construction of spatial clusters is first introduced below.

Figure 1. Trajectories of (a) cattle, (b) mule deer, and (c) elk at the Starkey Experimental

Forest and Range in June 1995. Different colors represent trajectories of individual animals.
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Radio telemetry data take the form of time-indexed spatial locations of individual animals.

Animal movement can be represented by a set of trajectories T 5 {Ti} (1< i< n) of n individu-

als, wherein each Ti comprises mi points Pij 5 {<sij, tij>} (1< j<mi), and sij and tij represent

the spatial coordinates and time of an individual telemetry location.

To aggregate points into spatial clusters, we adopt the spatial clustering method introduced

in Guo et al. (2012), which involves three components: defining the similarity of a pair of

points (A and B) based on their Shared Nearest Neighbors (SNN), building a Delaunay Trian-

gulation (DT) to enable efficient clustering, and a constrained hierarchical spatial clustering

procedure to derive clusters of similar sizes. Let NN (A, k) and NN (B, k) be the k Nearest

Neighbors (NN) of A and B including itself in space, respectively, while SNN is the number of

points shared by both NN (A, k) and NN (B, k). The similarity of A and B in k nearest neighbors

is the ratio between the intersection of NN (A, k) and NN (B, k) (i.e., SNN (A, B, k)) and the

union of NN (A, k) and NN (B, k):

Similarity A; Bð Þ 5 NN A; kð Þ \ NN B; kð Þð Þ= NN A; kð Þ [ NN B; kð Þð Þ (1)

Before clustering, a DT is built for all points (Guo, Peuquet, and Gahegan 2003). A DT for

a set P of points in the Euclidean plane is a triangulation DT (P) such that no point in P is

inside the circumcircle of any triangle in DT (P) (Tsai 1993). The construction of a DT effi-

ciently reduces the time complexity of finding the k nearest neighbor points of each point and

speeds up the clustering (see below for explanation). The clustering step is a bottom–up proce-

dure based on the single-linkage hierarchical clustering, which recursively merges the nearest

clusters. It defines the distance between two clusters as the shortest edge that connects the two

clusters, the clustering procedure only needs to evaluate the DT edges (instead of all pair-wise

edges among the points). This significantly speeds up the clustering process and achieves a

time complexity of O (n log n), where n is the number of telemetry locations (Guo et al. 2012).

Beginning with each point as a single cluster, clusters are merged according to their descending

order of similarity. The clustering process continues until the number of points contained in

each cluster reaches a user-defined minimum number of points (q) (See Algorithm 1 in

Figure 2. Illustration of the steps used to define and quantify animal movement sequences:

(a) Telemetry locations are aggregated into spatial clusters A to E; (b) Trajectories are repre-

sented as sequences passing through the spatial clusters; (c) Distances and/or features are

calculated or extracted from these sequences. See the text for the explanation of spatial clus-

ters, the Longest Common SubSequence (LCSS) and entropy (H).
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Appendix and more details in Guo et al. (2012)). The boundaries of the spatial clusters are

delineated by dissolving the Thiessen polygons of the points in the clusters.

The clustering procedure is governed by two parameters, the number of nearest neighbors

(k) and the minimum size of clusters (q). When k is held constant and q varies, the structure of

the dendrogram does not change, but an increase or decrease of q yields clusters at higher or

lower levels of the hierarchy. When q is held constant, changing k impacts the smoothing

effect. A larger value of k produces a stronger smoothing effect because the similarity of two

points is considered in a larger neighborhood. The SNN based clustering has two merits (Guo

et al. 2012): (1) unlike other methods, SNN is generally not biased toward producing clusters

of a particular shape (e.g., k-means clusters are likely to be circles), and (2) it is adaptive to the

uneven distribution of points over space and able to find more clusters in areas of high point

density and fewer clusters where point density is low.

After the telemetry points are grouped into spatial clusters, each telemetry point is repre-

sented by the spatial cluster to which it belongs. Therefore, each trajectory that consists of

telemetry points is considered as a sequence passing through the spatial clusters. We performed

sequential data analysis to quantify the movement patterns of the three species considering

these trajectories as sequences passing through the spatial clusters. Various properties can be

extracted from the sequences of spatial clusters through which trajectories pass (Gabadinho

et al. 2011). The longest common subsequence (LCSS), which measures spatial similarity

between pairs of trajectories, and entropy (H), which measures the diversity of spatial clusters

that a trajectory passes through, were used in this study. Both are described below.

Before describing how to determine the LCSS, we introduce the concept of a Subsequence

(Gabadinho et al. 2011). Let x be a string that contains n characters. In this case, x represents a

trajectory and the n characters indicate the spatial clusters representing each of n telemetry

locations that the trajectory passes through. A subsequence v of x is formed by taking away

0� k� n characters from x. If k 5 0, v is x itself. If k 5 n, v is empty (i.e., the length of v is

zero). Formally, v 5 v1v2. . .vp is a subsequence of x, if there exists strings u1,u2, . . .,up11 that

u1v1u2v2. . . vpup11 5 x (any u1 to up11 could be empty). In other words, characters in v are not

necessarily adjacent to the next one as they are in x, but the characters in v must have the same

sequence as they are in x.

The LCSS for strings of x and y is the longest subsequence of both x and y. To make the

LCSS of different lengths of strings (i.e., trajectories containing different number of telemetry

locations) comparable, the length of the longest subsequence is standardized by the geometrical

mean of the two sequence lengths (Studer et al. 2011). To facilitate visualization and compari-

sons with other measures, LCSS can also be converted to a dissimilarity measure by subtracting

the standardized LCSS from 1 (equation 2). Thereafter, LCSS is a similarity measure, while

LCSS distance (matrix) refers to a dissimilarity measure:

LCSS distance 5 12
LCSS x; yð Þffiffiffiffiffiffiffiffiffiffi

jxjjyj
p (2)

where LCSS x; yð Þ is the LCSS for strings of x and y, and jxj and jyj are their length.

The entropy (H) of the string x that has m distinct characters is defined as:

H52
Xm

i51

pilogpi (3)

where pi is the proportion of occurrences of the ith characters in x (Gabadinho et al. 2011).
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Here, each character represents a spatial cluster, and x indicates the sequence of the spatial

clusters a trajectory passes through. Entropy is considered as a measure of the diversity of spa-

tial clusters that a trajectory passes through, with a high entropy value indicating high diversity.

When the frequencies of a trajectory passing through each cluster are equal, the entropy

reaches the maximum possible value for the m distinct spatial clusters. When all points that a

trajectory passes through are in the same spatial cluster, the entropy equals zero. Both LCSS

and entropy were calculated using the TraMineR package in R (Gabadinho et al. (2011); http://

cran.r-project.org/web/packages/TraMineR/index.html, last accessed on May 3, 2015).

We used three approaches to examine the utility of using LCSS and H to quantify move-

ment patterns of the three species. First, we visualized the LCSS distance matrix to distinguish

individual movement patterns among the three species and the special movement patterns of

some individuals. Second, we used boxplots to explore the ability of entropy (H) to differenti-

ate the three species. Third, we examined the performance of trajectory classification based on

LCSS and entropy (H) under the assumption that LCSS and entropy (H) can achieve high clas-

sification accuracy if they capture differences in the movement patterns of the three species.

Trajectory classification was conducted using Support Vector Machine (SVM) (Dimitria-

dou et al. 2008), a typical method used in trajectory analysis (e.g., Lee et al. 2008; Dodge,

Weibel, and Forootan 2009). SVM separates objects into different class labels by constructing

hyperplanes in a multidimensional space (Vapnik 2000). The two dimensions for SVM that we

used were entropy (H) and the first axis from Metric Multidimensional Scaling (MMS) on the

LCSS distance matrix. MMS is a dimensionality-reduction technique that places objects into

an n dimensional space while attempting to preserve pairwise distances of objects in a distance

matrix as much as possible. In MMS, the first axis represents the largest variance of LCSS dis-

tance matrix among the other axes (Salkind 2006). Five-fold cross-validation (the same por-

tions of training and testing data as Lee et al. (2008)) was used to avoid bias that may be

caused by the selection of training samples. The data set was evenly divided into five subsets.

In each of the five single runs, one subset was hold for testing and the others were used to train

the SVM, which was then applied to classify the trajectories in the testing subset as either cat-

tle, elk or mule deer. The accuracy for that single run is the ratio of the number of correctly pre-

dicted trajectories and the number of trajectories in the testing subset. The SVM classification

was conducted using the e1071 package in R (Meyer, Leisch, and Hornik (2003); http://cran.r-

project.org/web/packages/e1071/index.html, last accessed on May 3, 2015). Classification

accuracy was determined from the mean accuracy of five single runs.

Prior to the analyses, we expected that species movements should be constrained by two

factors: (1) the presence of internal barbed wire fences, which should confine cattle movement

to the northern portion of the range, and (2) the distribution of ecosystems across the study

area, which should affect the movement pathways, home range size and location of suitable

habitats for all three species, but especially for elk and mule deer. We examined the ability of

LCSS and entropy (H) to capture such differences by extracting two factors from the trajecto-

ries. We first calculated the percentage of points in each trajectory that were within the internal

barbed-wire fences. We assumed that LCSS, which measures spatial similarity between pairs

of trajectories, should be able to capture the spatial constraint that these fences place on the

movement of cattle. To test the correlation between the LCSS distance matrix and the percent-

age of points in each trajectory within the barbed-wire fences, we converted the percentage of

points in each trajectory to the pairwise distance between trajectories, and then performed a

Mantel test, which determines the correlation between two distance matrices (Legendre and
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Fortin 1989). Mantel tests were performed using the ecodist package in R (Goslee and Urban

(2007); http://cran.r-project.org/web/packages/ecodist/index.html, last accessed on May 3).

Next, we examined the home range which should be affected by species-specific adapta-

tions and biological properties, such as weight, age, and gender (McNab 1963; Harestad and

Bunnel 1979). Home range area has fundamental consequences for many ecological processes,

such as the distribution and abundance of organisms and population regulation (B€orger,

Dalziel, and Fryxell 2008). So we tested whether entropy (H) “reflects” ecological meanings

that home range carries by fitting entropy (H) and the area of home range with linear regres-

sion. We chose Minimum Convex Polygon (MCP) to estimate the area of home range.

Although MCP has deficiencies and a variety of home range estimation methods have been

developed (e.g., Getz and Wilmers 2004; Downs and Horner 2009), MCP remains a classic

method that has been used either for home range estimation or used as a reference that any new

home range estimation methods are compare to. In addition, we tested whether LCSS is corre-

lated with the home range overlap of individual organisms using a Mantel test (Legendre and

Fortin 1989). The overlapped area of home range for each pair of individuals was standardized

by the geometrical mean of individuals’ area of home range.

The assignment of telemetry locations into spatial clusters is a key process in our method.

As discussed above, this procedure is controlled by two parameters, the number of nearest

neighbors (k) and the minimum size of clusters (q). To test the robustness of our method to var-

iations in the values of k and q, we generated spatial clusters using values of k and q that ranged

from 10 to 100, with an interval of 10, resulting in 100 combinations of k and q in total. All

tests introduced above were conducted for the 100 configurations of k and q.

Results

Spatial clustering

The number of nearest neighbors used to determine the similarity between each pair of points

(k) and the minimum number of points contained in a cluster (q) control the number and shape

of resulting spatial clusters (i.e., the assignment of points to spatial clusters). Among the 100

combinations of k and q, the minimum number of spatial clusters was 46 (k 5 10 and q 5 100)

and the maximum number of spatial clusters was 716 (k 5 10 and q 5 10).

The size of spatial clusters was controlled primarily by q. Decreasing the value of q

yielded more spatial clusters containing fewer points at lower levels of a dendrogram, which

were nested in fewer but larger spatial clusters at higher levels (Fig. 3). In contrast, k primarily

governed the shape of spatial clusters. When q was held constant, varying k yielded a similar

number of spatial clusters in which the number of points was no less than q. However, the

shape of these spatial clusters was different because the clustering was based on similarity

governed by different values of k (Fig. 4).

Contrasting species trajectories: LCSS and entropy

Although the number and shape of spatial clusters varied under the configurations of k and q,

there were significant correlations (P< 0.05) for all 100 configurations between: (1) the LCSS

distance and the percentage of points in each trajectory within the fences, (2) entropy (H) and

the area of home range, and (3) LCSS and the home range overlap. LCSS and entropy (H)

extracted from the spatial clusters generated from the configuration of k 5 10 and q 5 100,

which yielded the smallest number of clusters (Fig. 4a), were chosen to illustrate the difference
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of LCSS and entropy (H) among the three species. Other configurations showed similar

patterns.

Presenting LCSS distance measures in a matrix facilitated the visual examination of trajec-

tory dissimilarities across and within species (Fig. 5a). Dissimilarity was typically high

between the trajectories of individual cattle and mule deer, individual mule deer and elk, and

individual elk and cattle, which indicated that LCSS identified the differential movement pat-

terns of the three species. Within species, trajectories of individual mule deer exhibited greater

dissimilarity than those of individual cattle and elk (Fig. 5a), suggesting that the movement

behavior differed more among individual mule deer than among individual cattle or elk. On

average, trajectories of elk had the highest entropy, followed by those of cattle and mule deer

(Fig. 6).

Beyond these general patterns, LCSS was able to highlight some exceptions. For example,

most mule deer utilized different areas (Fig. 1) and therefore had relatively high dissimilarity

Figure 3. Spatial clusters created under configurations of k 5 10 and q 5 10 (thin lines in

grey) and k 5 10 and q 5 100 (thick lines in black). When k is held constant, a lower value

of q yields smaller and more clusters that are nested in larger and fewer clusters generated

from a larger value of q.
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with other mule deer (red pixels representing dissimilarity within trajectories of mule deer in

Fig. 5a). The pair of trajectories for the two mule deer highlighted by the square box in Fig. 5a,

however, showed more similar movement patterns because the individuals moved through sim-

ilar areas (Fig. 5b). Similarly, in contrast to the high dissimilarity between most trajectories of

mule deer/elk and cattle, trajectories of one mule deer and one elk highlighted by the two rec-

tangular boxes in Fig. 5a had higher similarity with cattle because they utilized similar areas

(Fig. 5c).

Trajectory classification

Finally, we examined the ability of our approach to differentiate the movement characteristics

of different species using support vector machines to classify individual trajectories on the

basis of shared movement sequences (LCSS) and the diversity of spatial clusters that were vis-

ited (entropy). Because both measures are dependent on the creation of spatial clusters, the

results will vary depending on the number of nearest neighbors (k) and the minimum size of

clusters (q) used in the clustering procedure. While we examined classification accuracy for all

100 combinations of k and q used to create spatial clusters, the results presented here are for

k 5 60, q 5 70, one of the configurations that achieved the highest classification accuracy

Figure 4. Spatial clusters created under configurations of (a) k 5 10 and q 5 100 (n 5 46)

and (b) k 5 100 and q 5100 (n 5 63). When q is held constant, varying k yields a similar

number of spatial clusters but with different shapes. Dots are telemetry locations.
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(92.2%), and k 5 10, q 5 90, the configuration achieving the lowest classification accuracy

(83.3%).

Figure 5. Results of LCSS analysis. (a) LCSS distance matrix of trajectories of cattle, mule

deer, and elk extracted from the spatial clusters generated under the configuration of k 5 10

and q 5 100. Each pixel represents the dissimilarity between a pair of trajectories. (b) Trajecto-

ries of two individual mule deer that exhibit high similarity as highlighted by the square box in

(a). (c) Trajectories of one individual mule deer and one individual elk that had high similarity

to trajectories of cattle (the two whitish strips highlighted by the two rectangular boxes in (a).
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Trajectory classifications for both configurations of k and q showed a pattern in which indi-

viduals of specific species were clearly segregated on the basis of entropy (H) values and

LCSS similarities, as captured by the first axis values from a MMS on pairwise LCSS distances

(Fig. 7). For both configurations, deer were distinguished by lower entropy, which indicates

that individuals traveled through a lower diversity of spatial clusters than individual cattle or

elk. In contrast, cattle and elk both had higher mean entropy values than mule deer, but were

differentiated on the basis of MMS Axis 1 values. Specifically, trajectories of cattle were clus-

tered at positive MMS Axis 1 values, which were associated with a high percentage of points

within the fences, while most elk trajectories had negative MMS Axis 1 values. Clustering of

individual cattle, elk, and mule deer trajectories was more compact from the configuration of

k 5 60, q 5 70 than that from k 5 10, q 5 90, which explained the higher classification accu-

racy. The trajectories of individual mule deer and elk with movement patterns that were similar

to cattle (discussed above and illustrated in Fig. 5c) were those least distinguishable in Fig. 7.

When H and LCSS similarities were used to classify the individual trajectories, the accu-

racy of species classification for the 100 combinations of k and q ranged from 83.3% to 92.2%,

with an average of 89.4%. These accuracy values were all greater than or equal to the 83.3%

accuracy achieved by Lee et al. (2008) for the same data set but using an alternative method.

The lowest accuracy resulted from the configuration of k 5 10 and q 5 90 (which used few

nearest neighbors and a large minimum cluster size) while the highest accuracy was from the

configurations of: k 5 50, q 5 20; k 5 60, q 5 40; k 5 60, q 5 70; k 5 60, q 5 80; k 5 70,

q 5 50; k 5 70, q 5 70; and k 5 90, q 5 90.

Discussion

Our method provides an alternative approach for analyzing trajectories of animal movement by

considering trajectories as sequences of spatial clusters, which are an aggregation of telemetry

points. Two parameters, the number of nearest neighbors (k) and the minimum size of clusters

(q), control the number and the shape of spatial clusters. Consequently, they affect how many

Figure 6. Boxplot showing the entropy of trajectories for cattle, mule deer, and elk

extracted from spatial clusters with the configuration of k 5 10 and q 5 100.
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labels (i.e., spatial clusters) are used to represent the trajectories and how these trajectories are

labelled (i.e., the assignment of each point in trajectories to its corresponding spatial cluster).

By examining LCSS and entropy extracted from spatial clusters generated by k and q in a wide

range, we demonstrated that the patterns suggested by LCSS and entropy were robust to varied

configurations of k and q.

Figure 7. Plots of LCSS and entropy values used to classify individual trajectories of cattle,

mule deer, and elk with the configuration of (a) k 5 10 and q 5 90 and (b) k 5 60 and

q 5 70. Arrows denote the trajectories of mule deer and elk discussed in Fig. 5c.
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Informative properties of trajectories can be extracted based on these sequences. We chose

two particular measures, LCSS and entropy (refer to Gabadinho et al. (2011)) for other useful

properties), and argue that the design of our method is particularly suitable for the analysis of

animal movement. Entropy was highly correlated to home range area, which itself is related to

biological properties (e.g., weight, age, and gender) and a range of ecological processes. The

lower entropy of trajectories for mule deer suggested that individuals preferentially move

through certain places (e.g., habitats or food sources) more regularly than cattle and elk (Figs.

1 and 6).

LCSS similarity emphasizes the similarity of spatial clusters shared by individual trajecto-

ries while paying less attention to non-shared clusters. For example, the LCSS for trajectories

passing through spatial clusters AACBDBDA and AEAFBBGA is AABBA. The similar segments

in trajectories might be places for water or food sources where all individuals need to visit,

which also suggested by the correlation with home range overlap of individuals. While the dis-

similar segments: (1) could be unusual or random movement caused by avoiding predators or

unpredictable reasons, or (2) suggest that individuals have different preferences for habitat and

food sources.

The high LCSS distance among the trajectories of mule deer suggested segregation of

mule deer in the usage of resources (Bowyer 1984). Coe et al. (2001) found that elk usage of

ponderosa pine/Douglas fir ecosystems decreased with the presence of cattle while mule deer

usage of the same ecosystems increased as the elk’s usage decreased in early summer. These

findings were reflected in this study by the high LCSS distance among the trajectories of the

three species, which suggested that their trajectories had little overlap in sequences moving

across time or space (Fig. 5). LCSS also had a strong relationship with the percentage of points

in each trajectory within fences, which indicated that LCSS captured the spatial constraint that

fences placed on cattle movement.

Because LCSS and entropy captured quantitative aspects of individual movements that

could be tied to ecological patterns and constraints (which themselves are species-specific), our

method was able to effectively discriminate among species movements and achieved a high

accuracy when classifying individuals by species according to their movement patterns. In fact,

the classification accuracy based on all 100 combinations of k and q were higher than or equal

to Lee et al. (2008), which supported the robustness of our method to these two parameters.

Lee et al. (2008) employed a method that had two phases: region-based clustering and

trajectory-based clustering. The region-based clustering phase grouped major class of trajecto-

ries into homogenous rectangular regions. The trajectory-based clustering phase then parti-

tioned trajectories into the same class based on the density. Both of these phases not only

involve the determination of two optimal parameters for each class of trajectories but also the

selection of discriminative clusters. Their method achieved an accuracy of 83.3% using the two

phases, but just 50% if only the trajectory-based clustering phase was used. Our method used

only two parameters (i.e., k and q) to create spatial clusters and two properties (i.e., LCSS and

entropy) to discriminate trajectories of different species and therefore, achieved higher classifi-

cation accuracy in a much simpler way.

Conclusion

In this article, we present a new approach for the analysis of animal trajectories that considers

animal movements as sequences passing through aggregations of telemetry locations and
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applied the method to investigate movement patterns of cattle, mule deer, and elk at the Starkey

EFR. The properties extracted from these sequences effectively distinguished the movement

patterns of different species. Trajectory classification using these properties achieved higher

accuracy than the previous study with great simplicity. Although we applied our method on a

data set that has multiple species, our method is not limited to classify trajectories. Our method

has the advantage of extracting ecologically meaningful features in animal movement and

could be used to quantify animal movement, explore unknown patterns, detect trends and iden-

tify unusual behaviors.
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